Normalizing Flows
  • About
  • API
  • Examples
    • Augmented Normalizing Flow based on Real NVP
    • Changing the base distribution of a flow model
    • Mixed Circular and Normal Neural Spline Flow
    • Comparison of Planar, Radial, and Affine Coupling Flows
    • Conditional Normalizing Flow Model
    • Glow
    • Learn Distribution given by an Image using Real NVP
    • Neural Spline Flow
    • Neural Spline Flow on a Circular and a Normal Coordinate
    • Planar flow
    • Real NVP
    • Residual Flow
    • Variational Autoencoder with Normalizing Flows
  • Search
In [ ]:
Copied!
from __future__ import print_function
import torch
import torch.utils.data
from torch import nn, optim
from torch.distributions.normal import Normal
from torch.nn import functional as F
from torchvision import datasets, transforms
from tqdm import tqdm
from normflows.flows import Planar, Radial, MaskedAffineFlow, BatchNorm
import argparse
from datetime import datetime
import os
from normflows import nets
import pandas as pd
import random
from __future__ import print_function import torch import torch.utils.data from torch import nn, optim from torch.distributions.normal import Normal from torch.nn import functional as F from torchvision import datasets, transforms from tqdm import tqdm from normflows.flows import Planar, Radial, MaskedAffineFlow, BatchNorm import argparse from datetime import datetime import os from normflows import nets import pandas as pd import random
In [ ]:
Copied!
parser = argparse.ArgumentParser(description="FlowVAE implementation on MNIST")
parser.add_argument(
    "--batch-size",
    type=int,
    default=256,
    metavar="N",
    help="Training batch size (default: 256)",
)
parser.add_argument(
    "--latent-size",
    type=int,
    default=40,
    metavar="N",
    help="Latent dimension size (default: 40)",
)
parser.add_argument(
    "--K", type=int, default=10, metavar="N", help="Number of flows (default: 10)"
)
parser.add_argument(
    "--flow",
    type=str,
    default="Planar",
    metavar="N",
    help="Type of flow (default: Planar)",
)
parser.add_argument(
    "--epochs",
    type=int,
    default=15,
    metavar="N",
    help="Nr of training epochs (default: 15)",
)
parser.add_argument(
    "--dataset",
    type=str,
    default="mnist",
    metavar="N",
    help="Dataset to train and test on (mnist, cifar10 or cifar100) (default: mnist)",
)
parser.add_argument(
    "--no-cuda", action="store_true", default=False, help="enables CUDA training"
)
parser.add_argument(
    "--seed", type=int, default=15, metavar="S", help="Random Seed (default: 1)"
)
parser.add_argument(
    "--log-intv",
    type=int,
    default=20,
    metavar="N",
    help="Training log status interval (default: 20",
)
parser.add_argument(
    "--experiment_mode",
    type=bool,
    default=False,
    metavar="N",
    help="Experiment mode (conducts 10 runs and saves results as DataFrame (default: False)",
)
parser.add_argument(
    "--runs",
    type=int,
    default=10,
    metavar="N",
    help="Number of runs in experiment_mode (experiment_mode has to be turned to True to use) (default: 10)",
)
parser = argparse.ArgumentParser(description="FlowVAE implementation on MNIST") parser.add_argument( "--batch-size", type=int, default=256, metavar="N", help="Training batch size (default: 256)", ) parser.add_argument( "--latent-size", type=int, default=40, metavar="N", help="Latent dimension size (default: 40)", ) parser.add_argument( "--K", type=int, default=10, metavar="N", help="Number of flows (default: 10)" ) parser.add_argument( "--flow", type=str, default="Planar", metavar="N", help="Type of flow (default: Planar)", ) parser.add_argument( "--epochs", type=int, default=15, metavar="N", help="Nr of training epochs (default: 15)", ) parser.add_argument( "--dataset", type=str, default="mnist", metavar="N", help="Dataset to train and test on (mnist, cifar10 or cifar100) (default: mnist)", ) parser.add_argument( "--no-cuda", action="store_true", default=False, help="enables CUDA training" ) parser.add_argument( "--seed", type=int, default=15, metavar="S", help="Random Seed (default: 1)" ) parser.add_argument( "--log-intv", type=int, default=20, metavar="N", help="Training log status interval (default: 20", ) parser.add_argument( "--experiment_mode", type=bool, default=False, metavar="N", help="Experiment mode (conducts 10 runs and saves results as DataFrame (default: False)", ) parser.add_argument( "--runs", type=int, default=10, metavar="N", help="Number of runs in experiment_mode (experiment_mode has to be turned to True to use) (default: 10)", )
In [ ]:
Copied!
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available()
In [ ]:
Copied!
torch.manual_seed(args.seed)
torch.manual_seed(args.seed)
In [ ]:
Copied!
device = torch.device("cuda" if args.cuda else "cpu")
device = torch.device("cuda" if args.cuda else "cpu")
In [ ]:
Copied!
class SimpleFlowModel(nn.Module):
    def __init__(self, flows):
        super().__init__()
        self.flows = nn.ModuleList(flows)

    def forward(self, z):
        ld = 0.0
        for flow in self.flows:
            z, ld_ = flow(z)
            ld += ld_

        return z, ld
class SimpleFlowModel(nn.Module): def __init__(self, flows): super().__init__() self.flows = nn.ModuleList(flows) def forward(self, z): ld = 0.0 for flow in self.flows: z, ld_ = flow(z) ld += ld_ return z, ld
In [ ]:
Copied!
class BinaryTransform:
    def __init__(self, thresh=0.5):
        self.thresh = thresh

    def __call__(self, x):
        return (x > self.thresh).type(x.type())
class BinaryTransform: def __init__(self, thresh=0.5): self.thresh = thresh def __call__(self, x): return (x > self.thresh).type(x.type())
In [ ]:
Copied!
class ColourNormalize:
    def __init__(self, a=0.0, b=0.0):
        self.a = a
        self.b = b

    def __call__(self, x):
        return (self.b - self.a) * x / 255 + self.a
class ColourNormalize: def __init__(self, a=0.0, b=0.0): self.a = a self.b = b def __call__(self, x): return (self.b - self.a) * x / 255 + self.a
In [ ]:
Copied!
if args.dataset == "mnist":
    img_dim = 28
    dtf = transforms.Compose([transforms.ToTensor(), BinaryTransform()])
elif args.dataset == "cifar10" or args.dataset == "cifar100":
    img_dim = 8
    dtf = transforms.Compose(
        [
            transforms.RandomCrop([8, 8]),
            transforms.ToTensor(),
            ColourNormalize(0.0001, 1 - 0.0001),
        ]
    )
else:
    raise ValueError("The only dataset calls supported are: mnist, cifar10, cifar100")
if args.dataset == "mnist": img_dim = 28 dtf = transforms.Compose([transforms.ToTensor(), BinaryTransform()]) elif args.dataset == "cifar10" or args.dataset == "cifar100": img_dim = 8 dtf = transforms.Compose( [ transforms.RandomCrop([8, 8]), transforms.ToTensor(), ColourNormalize(0.0001, 1 - 0.0001), ] ) else: raise ValueError("The only dataset calls supported are: mnist, cifar10, cifar100")
In [ ]:
Copied!
def extract_cifar_patch(tensor, target_size):
    x = random.randint(0, 32 - target_size)
    y = random.randint(0, 32 - target_size)
    return tensor[x : x + target_size, y : y + target_size, :]
def extract_cifar_patch(tensor, target_size): x = random.randint(0, 32 - target_size) y = random.randint(0, 32 - target_size) return tensor[x : x + target_size, y : y + target_size, :]
In [ ]:
Copied!
# Training
def flow_vae_datasets(
    id,
    download=True,
    batch_size=args.batch_size,
    shuffle=True,
    transform=dtf,
    patch_size=None,
):
    data_d_train = {
        "mnist": datasets.MNIST(
            "datasets", train=True, download=True, transform=transform
        ),
        "cifar10": datasets.CIFAR10(
            "datasets", train=True, download=True, transform=transform
        ),
        "cifar100": datasets.CIFAR100(
            "datasets", train=True, download=True, transform=transform
        ),
    }
    data_d_test = {
        "mnist": datasets.MNIST(
            "datasets", train=False, download=True, transform=transform
        ),
        "cifar10": datasets.CIFAR10(
            "datasets", train=False, download=True, transform=transform
        ),
        "cifar100": datasets.CIFAR100(
            "datasets", train=False, download=True, transform=transform
        ),
    }

    # training_data = data_d_train.get(id)
    # test_data = data_d_test.get(id)
    # if patch_size is not None:
    # training_data.data = np.stack(
    # [extract_cifar_patch(training_data.data[i, :, :], patch_size) for i in range(len(training_data.data))])
    # test_data.data = np.stack(
    # [extract_cifar_patch(test_data.data[i, :, :], patch_size) for i in range(len(test_data.data))])

    train_loader = torch.utils.data.DataLoader(
        data_d_train.get(id), batch_size=batch_size, shuffle=shuffle
    )

    test_loader = torch.utils.data.DataLoader(
        data_d_test.get(id), batch_size=batch_size, shuffle=shuffle
    )
    return train_loader, test_loader
# Training def flow_vae_datasets( id, download=True, batch_size=args.batch_size, shuffle=True, transform=dtf, patch_size=None, ): data_d_train = { "mnist": datasets.MNIST( "datasets", train=True, download=True, transform=transform ), "cifar10": datasets.CIFAR10( "datasets", train=True, download=True, transform=transform ), "cifar100": datasets.CIFAR100( "datasets", train=True, download=True, transform=transform ), } data_d_test = { "mnist": datasets.MNIST( "datasets", train=False, download=True, transform=transform ), "cifar10": datasets.CIFAR10( "datasets", train=False, download=True, transform=transform ), "cifar100": datasets.CIFAR100( "datasets", train=False, download=True, transform=transform ), } # training_data = data_d_train.get(id) # test_data = data_d_test.get(id) # if patch_size is not None: # training_data.data = np.stack( # [extract_cifar_patch(training_data.data[i, :, :], patch_size) for i in range(len(training_data.data))]) # test_data.data = np.stack( # [extract_cifar_patch(test_data.data[i, :, :], patch_size) for i in range(len(test_data.data))]) train_loader = torch.utils.data.DataLoader( data_d_train.get(id), batch_size=batch_size, shuffle=shuffle ) test_loader = torch.utils.data.DataLoader( data_d_test.get(id), batch_size=batch_size, shuffle=shuffle ) return train_loader, test_loader
In [ ]:
Copied!
class FlowVAE(nn.Module):
    def __init__(self, flows):
        super().__init__()
        self.encode = nn.Sequential(
            nn.Linear(img_dim**2, 512),
            nn.ReLU(True),
            nn.Linear(512, 256),
            nn.ReLU(True),
        )
        self.f1 = nn.Linear(256, args.latent_size)
        self.f2 = nn.Linear(256, args.latent_size)
        self.decode = nn.Sequential(
            nn.Linear(args.latent_size, 256),
            nn.ReLU(True),
            nn.Linear(256, 512),
            nn.ReLU(True),
            nn.Linear(512, img_dim**2),
        )
        self.flows = flows

    def forward(self, x):
        # Encode
        mu, log_var = self.f1(
            self.encode(x.view(x.size(0) * x.size(1), img_dim**2))
        ), self.f2(self.encode(x.view(x.size(0) * x.size(1), img_dim**2)))

        # Reparameterize variables
        std = torch.exp(0.5 * log_var)
        norm_scale = torch.randn_like(std)
        z_0 = mu + norm_scale * std

        # Flow transforms
        z_, log_det = self.flows(z_0)
        z_ = z_.squeeze()

        # Q0 and prior
        q0 = Normal(mu, torch.exp((0.5 * log_var)))
        p = Normal(0.0, 1.0)

        # KLD including logdet term
        kld = (
            -torch.sum(p.log_prob(z_), -1)
            + torch.sum(q0.log_prob(z_0), -1)
            - log_det.view(-1)
        )
        self.test_params = [
            torch.mean(-torch.sum(p.log_prob(z_), -1)),
            torch.mean(torch.sum(q0.log_prob(z_0), -1)),
            torch.mean(log_det.view(-1)),
            torch.mean(kld),
        ]

        # Decode
        z_ = z_.view(z_.size(0), args.latent_size)
        zD = self.decode(z_)
        out = torch.sigmoid(zD)

        return out, kld
class FlowVAE(nn.Module): def __init__(self, flows): super().__init__() self.encode = nn.Sequential( nn.Linear(img_dim**2, 512), nn.ReLU(True), nn.Linear(512, 256), nn.ReLU(True), ) self.f1 = nn.Linear(256, args.latent_size) self.f2 = nn.Linear(256, args.latent_size) self.decode = nn.Sequential( nn.Linear(args.latent_size, 256), nn.ReLU(True), nn.Linear(256, 512), nn.ReLU(True), nn.Linear(512, img_dim**2), ) self.flows = flows def forward(self, x): # Encode mu, log_var = self.f1( self.encode(x.view(x.size(0) * x.size(1), img_dim**2)) ), self.f2(self.encode(x.view(x.size(0) * x.size(1), img_dim**2))) # Reparameterize variables std = torch.exp(0.5 * log_var) norm_scale = torch.randn_like(std) z_0 = mu + norm_scale * std # Flow transforms z_, log_det = self.flows(z_0) z_ = z_.squeeze() # Q0 and prior q0 = Normal(mu, torch.exp((0.5 * log_var))) p = Normal(0.0, 1.0) # KLD including logdet term kld = ( -torch.sum(p.log_prob(z_), -1) + torch.sum(q0.log_prob(z_0), -1) - log_det.view(-1) ) self.test_params = [ torch.mean(-torch.sum(p.log_prob(z_), -1)), torch.mean(torch.sum(q0.log_prob(z_0), -1)), torch.mean(log_det.view(-1)), torch.mean(kld), ] # Decode z_ = z_.view(z_.size(0), args.latent_size) zD = self.decode(z_) out = torch.sigmoid(zD) return out, kld
In [ ]:
Copied!
def logit(x):
    return torch.log(x / (1 - x))
def logit(x): return torch.log(x / (1 - x))
In [ ]:
Copied!
def bound(rce, x, kld, beta):
    if args.dataset == "mnist":
        return (
            F.binary_cross_entropy(rce, x.view(-1, img_dim**2), reduction="sum")
            + beta * kld
        )
    elif args.dataset == "cifar10" or args.dataset == "cifar100":
        # return (- torch.distributions.Normal(x.view(-1, img_dim ** 2), 1.).log_prob(rce)).sum() + beta * kld
        return F.mse_loss(rce, x, reduction="sum") + beta * kld
def bound(rce, x, kld, beta): if args.dataset == "mnist": return ( F.binary_cross_entropy(rce, x.view(-1, img_dim**2), reduction="sum") + beta * kld ) elif args.dataset == "cifar10" or args.dataset == "cifar100": # return (- torch.distributions.Normal(x.view(-1, img_dim ** 2), 1.).log_prob(rce)).sum() + beta * kld return F.mse_loss(rce, x, reduction="sum") + beta * kld
In [ ]:
Copied!
if args.flow == "Planar":
    flows = SimpleFlowModel([Planar((args.latent_size,)) for k in range(args.K)])
elif args.flow == "Radial":
    flows = SimpleFlowModel([Radial((args.latent_size,)) for k in range(args.K)])
elif args.flow == "RealNVP":
    b = torch.Tensor([1 if i % 2 == 0 else 0 for i in range(args.latent_size)])
    flows = []
    for i in range(args.K):
        s = nets.MLP([args.latent_size, 8, args.latent_size])
        t = nets.MLP([args.latent_size, 8, args.latent_size])
        if i % 2 == 0:
            flows += [MaskedAffineFlow(b, t, s)]
        else:
            flows += [MaskedAffineFlow(1 - b, t, s), BatchNorm()]
    flows = SimpleFlowModel(
        flows[:-1]
    )  # Remove last Batch Norm layer to allow arbitrary output
if args.flow == "Planar": flows = SimpleFlowModel([Planar((args.latent_size,)) for k in range(args.K)]) elif args.flow == "Radial": flows = SimpleFlowModel([Radial((args.latent_size,)) for k in range(args.K)]) elif args.flow == "RealNVP": b = torch.Tensor([1 if i % 2 == 0 else 0 for i in range(args.latent_size)]) flows = [] for i in range(args.K): s = nets.MLP([args.latent_size, 8, args.latent_size]) t = nets.MLP([args.latent_size, 8, args.latent_size]) if i % 2 == 0: flows += [MaskedAffineFlow(b, t, s)] else: flows += [MaskedAffineFlow(1 - b, t, s), BatchNorm()] flows = SimpleFlowModel( flows[:-1] ) # Remove last Batch Norm layer to allow arbitrary output
In [ ]:
Copied!
model = FlowVAE(flows).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
# train_losses = []
train_loader, test_loader = flow_vae_datasets(args.dataset)
model = FlowVAE(flows).to(device) optimizer = optim.Adam(model.parameters(), lr=0.001) # train_losses = [] train_loader, test_loader = flow_vae_datasets(args.dataset)
In [ ]:
Copied!
def train(model, epoch, beta):
    model.train()
    tr_loss = 0
    progressbar = tqdm(enumerate(train_loader), total=len(train_loader))
    for batch_n, (x, n) in progressbar:
        x = x.to(device)
        optimizer.zero_grad()
        rc_batch, kld = model(x)
        loss = bound(
            rc_batch, x.view(x.size(0) * x.size(1), img_dim**2), kld.sum(), beta=beta
        )
        avg_loss = loss / len(x)
        loss.backward()
        tr_loss += loss.item()
        optimizer.step()
        progressbar.update()
        if batch_n % args.log_intv == 0:
            print(
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
                    epoch,
                    batch_n * len(x),
                    len(train_loader.dataset),
                    100.0 * batch_n / len(train_loader),
                    loss.item() / len(x),
                )
            )
            print(model.test_params)
    progressbar.close()
    print(
        "====> Epoch: {} Average loss: {:.4f}".format(
            epoch, tr_loss / len(train_loader.dataset)
        )
    )
def train(model, epoch, beta): model.train() tr_loss = 0 progressbar = tqdm(enumerate(train_loader), total=len(train_loader)) for batch_n, (x, n) in progressbar: x = x.to(device) optimizer.zero_grad() rc_batch, kld = model(x) loss = bound( rc_batch, x.view(x.size(0) * x.size(1), img_dim**2), kld.sum(), beta=beta ) avg_loss = loss / len(x) loss.backward() tr_loss += loss.item() optimizer.step() progressbar.update() if batch_n % args.log_intv == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_n * len(x), len(train_loader.dataset), 100.0 * batch_n / len(train_loader), loss.item() / len(x), ) ) print(model.test_params) progressbar.close() print( "====> Epoch: {} Average loss: {:.4f}".format( epoch, tr_loss / len(train_loader.dataset) ) )
In [ ]:
Copied!
def test(model, epoch):
    model.eval()
    test_loss = 0
    with torch.no_grad():
        for i, (x, _) in enumerate(test_loader):
            x = x.to(device)
            rc_batch, kld = model(x)
            test_loss += bound(
                rc_batch, x.view(x.size(0) * x.size(1), img_dim**2), kld.sum(), beta=1
            ).item()

    test_loss /= len(test_loader.dataset)
    print("====> Test set loss: {:.4f}".format(test_loss))
    return test_loss
def test(model, epoch): model.eval() test_loss = 0 with torch.no_grad(): for i, (x, _) in enumerate(test_loader): x = x.to(device) rc_batch, kld = model(x) test_loss += bound( rc_batch, x.view(x.size(0) * x.size(1), img_dim**2), kld.sum(), beta=1 ).item() test_loss /= len(test_loader.dataset) print("====> Test set loss: {:.4f}".format(test_loss)) return test_loss
In [ ]:
Copied!
test_losses = []
test_losses = []
In [ ]:
Copied!
def anneal(epoch, len_e):
    return min(1.0, 0.01 + epoch / len_e)
def anneal(epoch, len_e): return min(1.0, 0.01 + epoch / len_e)
In [ ]:
Copied!
if __name__ == "__main__":
    if args.experiment_mode:
        min_test_losses = []
        min_test_losses.append(str(args))
        for i in range(args.runs):
            test_losses = []
            model.__init__(flows)
            model = model.to(device)
            optimizer = optim.Adam(model.parameters(), lr=0.001)
            if i == 0:
                seed = args.seed
            else:
                seed += 1
            torch.manual_seed(seed)
            for e in [i + 1 for i in range(args.epochs)]:
                beta = anneal(e, args.epochs)
                train(model, e, beta)
                tl = test(model, e)
                test_losses.append(tl)
            print("====> Lowest test set loss: {:.4f}".format(min(test_losses)))
            min_test_losses.append(min(test_losses))
        Series = pd.Series(min_test_losses)

        dirName = "experiments"
        if not os.path.exists(dirName):
            os.mkdir(dirName)
        else:
            pass
        file_name = dirName + "/{}.xlsx".format(str(datetime.now()))
        file_name = file_name.replace(":", "-")
        Series.to_excel(file_name, index=False, header=None)
    else:
        for e in [i + 1 for i in range(args.epochs)]:
            beta = anneal(e, args.epochs)
            train(model, e, beta=beta)
            tl = test(model, e)
            test_losses.append(tl)
if __name__ == "__main__": if args.experiment_mode: min_test_losses = [] min_test_losses.append(str(args)) for i in range(args.runs): test_losses = [] model.__init__(flows) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=0.001) if i == 0: seed = args.seed else: seed += 1 torch.manual_seed(seed) for e in [i + 1 for i in range(args.epochs)]: beta = anneal(e, args.epochs) train(model, e, beta) tl = test(model, e) test_losses.append(tl) print("====> Lowest test set loss: {:.4f}".format(min(test_losses))) min_test_losses.append(min(test_losses)) Series = pd.Series(min_test_losses) dirName = "experiments" if not os.path.exists(dirName): os.mkdir(dirName) else: pass file_name = dirName + "/{}.xlsx".format(str(datetime.now())) file_name = file_name.replace(":", "-") Series.to_excel(file_name, index=False, header=None) else: for e in [i + 1 for i in range(args.epochs)]: beta = anneal(e, args.epochs) train(model, e, beta=beta) tl = test(model, e) test_losses.append(tl)

Documentation built with MkDocs.

Search

From here you can search these documents. Enter your search terms below.

Keyboard Shortcuts

Keys Action
? Open this help
n Next page
p Previous page
s Search